MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
O determinante de Slater é uma técnica matemática da mecânica quântica que se usa para gerar funções de onda antissimétricas que descrevam os estados colectivos de vários fermiões e que cumpram o princípio de exclusão de Pauli.
Este tipo de determinantes foram nomeados em referência a John C. Slater, físico e químico teórico americano.
Duas partículas
Para ilustrar o seu funcionamento pode-se considerar o caso mais simples: o de duas partículas. Se e são as coordenadas da partícula 1 e da partícula 2 respectivamente, pode-se gerar a função de ondas colectiva como produto das funções de onda individuais de cada partícula. Quer dizer:
Esta expressão é conhecida como o produto de Hartree. De facto, este tipo de função de ondas não é válido para a representação de estados colectivos de fermiões já que esta função de ondas não é antissimétrica ante um intercâmbio de partículas. A função deve satisfazer a seguinte condição
O produto de Hartree não satisfaz o princípio de Pauli. Este problema poderá ser resolvido se tivermos em conta a combinação linear de ambos os produtos de Hartree
onde foi incluído o fator (1/√2) para que a função de ondas esteja normalizada convenientemente. Esta última equação pode ser reescrita como um determinante, da seguinte forma:
conhecido como determinante de Slater das funções e . As funções assim geradas têm a propriedade de anular-se si duas das funções de onda de uma partícula forem igual ou, o que é equivalente, dois dos fermiões estejam no mesmo estado quântico. Isto é equivalente a satisfazer o princípio de exclusão de Pauli.
Generalização a partículas
Esta expressão pode ser generalizada sem grande dificuldade a qualquer número de fermiões. Para um sistema composto por fermiões, define-se o determinante de Slater como
O uso do determinante como gerador da função de ondas garante a antissimetríca com respeito ao intercâmbio de partículas, assim como a impossibilidade de que duas partículas estejam no mesmo estado quântico, aspecto crucial ao se tratar com fermiões.
No método de Hartree-Fock, um único determinante de Slater usa-se como aproximação à função de ondas electrónica. Em métodos de cálculo mais precisos, tais como a interacção de configuração ou o MCSCF, utilizam-se sobreposições lineares de determinantes de Slater.
Comments
Post a Comment